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Abstract. Many measures have been employed to quantify an aspect of healthy, skilled movement, which
has been termed “movement smoothness” of which jerk is the most common. We propose a new, biologically-
motivated quantification of “movement smoothness”: submovement overlap.
In previous work, changes in submovements have been linked to changes in movement smoothness. Further
investigation revealed that in stroke patients, submovements consistently tend to grow closer over the course
of recovery. While jerk analysis showed some patients’ movements growing significantly less smooth, sub-
movement blending provided a remarkably consistent metric of recovery, despite wide variations in subject
age, lesion territory, and stroke severity.
In stroke patients, it is not average jerk but submovement blending thatmeaningfully quantifies the movement
smoothing that accompanies recovery. The strength and consistency with which it quantified patients’ recovery
indicates that analysis of submovement overlap may be a useful tool for measuring learning or other changes in
motor behavior in future human movement studies.

1. Introduction
Quantification of movement smoothness has been pursued for anumber of reasons. It has been investigated as
an indicator of motor skill and coordination (Platz et al., 1994) and as an objective measure of recovery from
neurological injury (Trombly, 1993; Cirstea & Levin, 2000;Kahn et al., 2001; Rohrer et al., 2002). Smoothness
has been used to identify pre-symptomatic individuals withHuntington’s disease (Smith et al., 2000) and has also
been shown to account for the two-thirds power law, widely considered an invariant in human movement (Wann
et al., 1988; Gribble & Ostry, 1996; Todorov & Jordan, 1998; Schaal & Sternad, 2001).

Many measures of movement smoothness have been used. Jerk, the third time derivative of position, is the
most common of such measures (Flash & Hogan, 1985), but others include snap, the derivative of jerk (Edelman
& Flash, 1987), and counting peaks in tangential velocity (Brooks, 1973; Fetters & Todd, 1987).

In simulations of movement made in the presence of signal-dependent noise, Harris and Wolpert (1998)
showed that smooth point-to-point movements minimize endpoint error. While smoothness is a characteristic
of healthy, mature human movement, the earliest movements made by infants (Hofsten, 1991) and by patients
recovering from stroke (Krebs et al., 1998) are striking in that they initially lack smoothness but become more
smooth with time. Any comprehensive model of movement production must describe not only the smoothness
of movement, but also its non-smoothness during development and neurological recovery. This prompted our
work in quantifying movement smoothness as a measure of stroke recovery, using both a jerk-based measure and
submovement overlap.

2. Smoothness as low jerk
Thirty one patients of various ages, levels of impairment, and times post-stroke participated in therapy using
rehabilitation robots, MIT-MANUS and InMotion2. A key characteristic of both robots is their backdrivability,
that is, their ability to get out of the way when pushed by a subject. Thus, subjects’ movements were minimally
obscured by the dynamics of the robots. All movements discussed here were point-to-point movements, made
while the robots were unpowered and hence acting only as passive measurement devices that restricted patients
hand motion to a horizontal plane.

A jerk-based smoothness measures was used to analyze patients’ movements. Qualitative observations of
patients’ movements growing smoother were not all reflectedin the jerk-based measure did not. Rather, jerk-
based smoothness significantlydecreased in 10 of the 31 patients. This, despite the fact that all 10 patients had
experienced recent strokes and therefore constituted the population expected to improve at the highest rate. These
results are presented in their entirety in (Rohrer et al., 2002).
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Figure 1. Simulated vs. actual speed profiles. a)-d) Progressive blending of two minimum-jerk curves at
various states of blending (T). e)-h) Actual subject speed profiles. e) and f) are taken from the first and last
therapy sessions of a subject with a recent stroke and g) and h) are taken from the first and last therapy
sessions of an subject with a stroke of more than one year prior. Simulated speed profiles qualitatively
resemble the actual subject data. a) contains two distinct speed peaks, just as the subject speed profile e).
Continuing down the columns, b) and f) are qualitatively similar, c) somewhat resembles g), and d) is similar to
h). Progression from the first to the last therapy sessions qualitatively suggests an increase in submovement
blending. Also, the movements of the subject that is longer post-stroke have characteristics of more highly
blended submovements, compared to those of the subject with a more recent stroke. j) Fluctuation of a jerk-
based smoothness metric during the simulated blending of two simulated submovements. The values of the
jerk metric are shown for a range of values of T. Translation to the left along the x-axis represents an increase
in submovement blending. Translation up the y-axis represents an increase in jerk-based smoothness. Speed
profiles for selected values of T are shown along the horizontal axis, depicting the state of the simulation at
various degrees of blending. During submovement blending, the jerk metric first shows the movement growing
less smooth before it begins to grow more smooth. Reproduced in part from (Rohrer et al., 2002).

3. Smoothness as overlapped submovements
We also applied a novel smoothness measure to the data: submovement overlap. Submovements are hypothesized,
discrete elements of human movement. Observations of slow movements (Vallbo & Wessberg, 1993), eye sac-
cades (Collewijn et al., 1988), cyclical movements (Woodworth, 1899; Crossman & Goodeve, 1983; Doeringer,
1999), ballistic movements (Morasso, 1981), and movementsrequiring a high degree of accuracy (Milner, 1992)
all support the existence of submovements. Complex movements have been decomposed into submovements as
an analysis tool (Morasso & Mussa-Ivaldi, 1982; Flash & Henis, 1991; Berthier, 1996; Burdet & Milner, 1998;
Rohrer & Hogan, 2003) with apparent success.

The observation of Krebs et al. (1998) that movements made bypatients recovering from stroke become
smoother with recovery was originally attributed to a progressive overlapping and blending of submovements,
though only isolated examples of submovement blending werereported. Further motivation for this analysis was
provided by the data presented in (Rohrer et al., 2002), a sample of which is shown in Figure 1a-h. These data
illustrate how the typical changes in patient speed profilesover the course of recovery closely match the changes
observed in a submovement-based model of recovery.

In order to determine the role of submovements in movement smoothness,we performed a second analysis
on the stroke recovery data, applying a novel submovement extraction algorithm (Rohrer et al., 2003). Movements
from the first and last days of therapy are shown in Figure 2, together with their extracted submovements. The
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Figure 2. Movements, with their extracted submovements, from the first and last days of therapy for a single
patient. The pattern observed is typical: submovements grow higher in peak speed, longer in duration, fewer
in number, and more overlapped. Reproduced from (Rohrer et al., 2004).

pattern displayed is typical: submovements grew higher in peak speed, longer in duration, fewer in number, and
more overlapped. Of these trends, the increase in overlap most strongly influences the resulting smoothness of
movement. This analysis showed that in stroke patients, submovements consistently tended to grow closer over the
course of recovery; no patient’s movements grew significantly less smooth, as measured by submovement overlap.

4. Discussion
The differences between jerk-based smoothness and submovement blending-based smoothness can be seen in
Figure 1j, which displays the jerk-based smoothness calculated during simulated submovement blending. As
the two submovements draw closer together, the jerk-based measure reports that the overall movement growsless
smooth. This trend reverses after the two submovements are sufficiently blended (T < 0.25s) and the two measures
begin to agree. This provides an explanation for the resultsof the jerk-based smoothness analysis reported earlier:
the patients for which it reported movements growing less smooth were also the patients with the least amount
of submovement overlap, patients with recent strokes. The simulation correctly predicts that, as these patients’
submovements blended together, the jerk-based measure would interpret the movement as becoming less smooth.

In this analysis, jerk does not accurately reflect the increases in smoothness observed during the recovery
process. There are other possible jerk-based smoothness metrics, of course. The fact that this particular metric did
not perform well in this application does not indicate that there is no value in jerk-based smoothness measurement.
However, it does suggest caution when measuring smoothnesswith jerk, as it can be misleading.

Recent work has shown that signal-dependent noise providesa biologically-grounded explanation for the
ubiquitous observation that smoothness in the minimum-jerk sense accurately describes coordinated movement (Har-
ris & Wolpert, 1998). However, we show here that recovery from stroke has more “fine structure”, well-described
by submovements. Whether a process like signal-dependent noise or optimal feedback control (Todorov & Jordan,
2002) can give rise to observed submovement behavior remains to be seen.

The counter-intuitive behavior of the jerk metric suggeststhat, at least during post-stroke recovery, jerk-
minimization may not be the primary criterion governing refinements in movement patterns. Submovement over-
lap, however, captures qualitative observations of movement changes and provides a robust quantitative measure
of the recovery process.
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